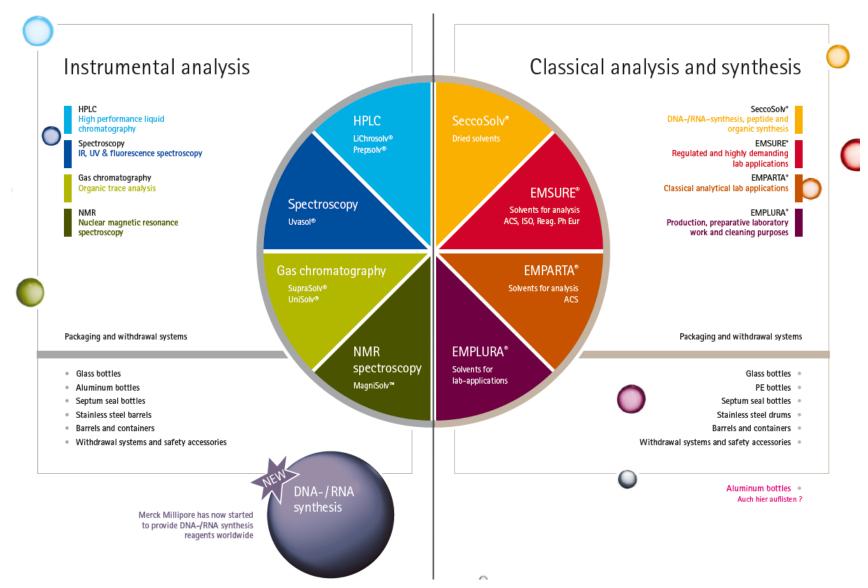
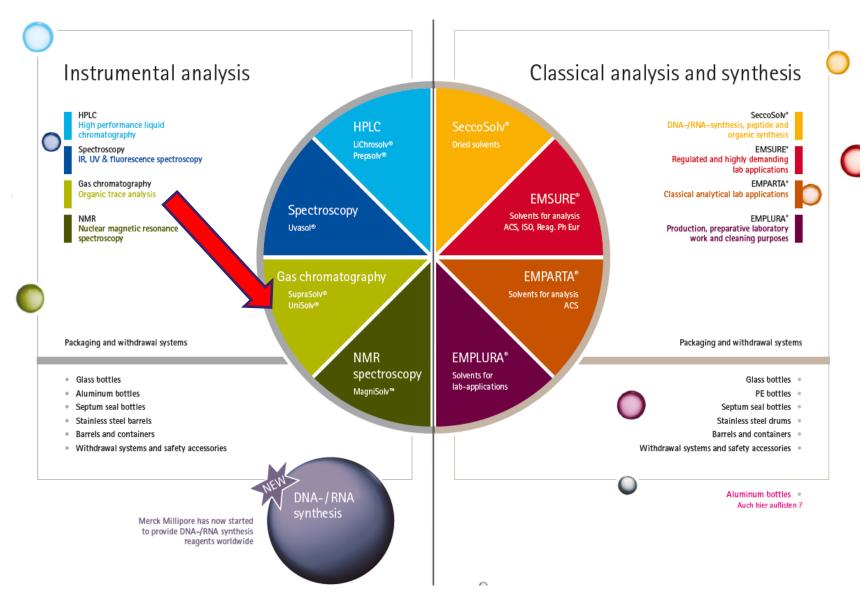


CLEAR CHOICE HIGH PURITY SOLVENTS FOR CHROMATOGRAPHY FROM MERCK

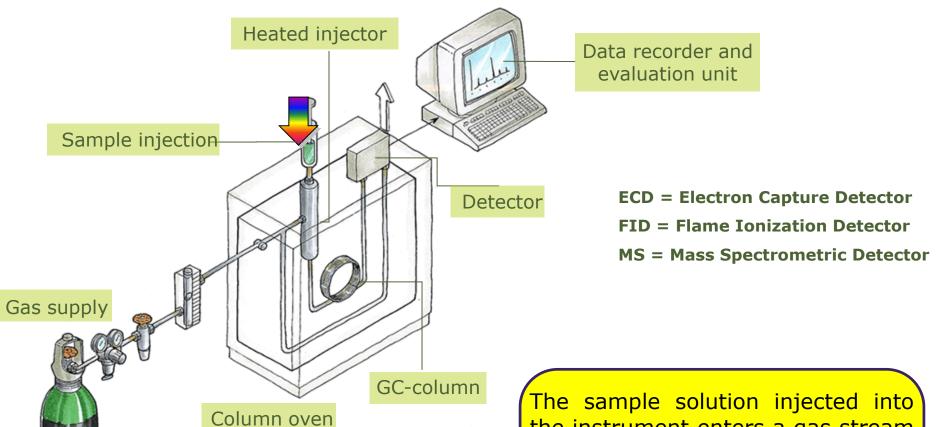

Małgorzata Ciechońska

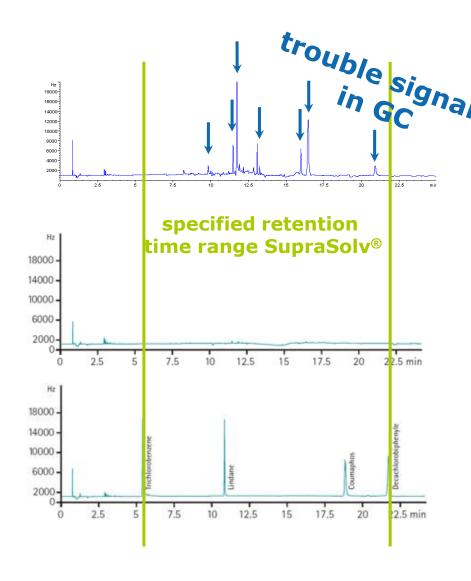
Senior Field Marketing Manager, Advanced Analytics, EE Russia+

Kaunas 24.10.2017



Solvents for Instrumental Analysis


Solvents for gas chromatography – Suprasolv® and Unisolv®


The principle of gas chromatography

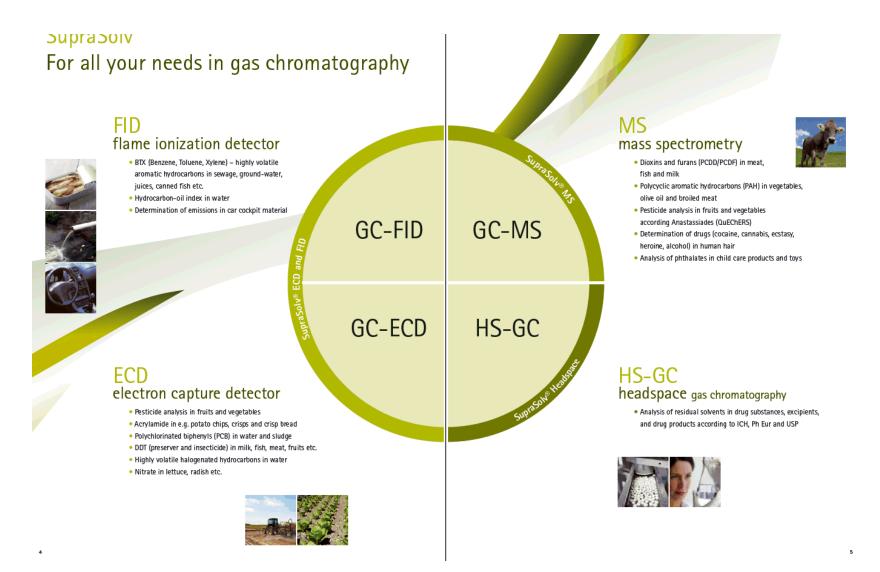
The sample solution injected into the instrument enters a gas stream which transports it through the column. The column separates the various components. The detector measures the quantity of the components that exit the column.

Why offering a special GC grade?

n-Hexane, purity (GC) 99.9%

Reagent grade not specified for GC-application

n-Hexane SupraSolv® ECD and FID, Merck Millipore 1.04371


standard

Benefit:

Reliable and reproducible results due to constant minimal signal-noise-ratio (clear baseline)

SupraSolv [®] **for Gas Chromatography An Application Oriented program**

Solvents for GC - SupraSolv® & UniSolv®

SupraSolv®

For headspace GC

Application:

Analysis of residual solvents in drug substances and products acc. Ph Eur & USP

UniSolv® for organic trace analysis

For ECD, FID and MS

SupraSolv® ECD and FID

For gas chromatography ECD and FID

Applications

- Pesticide analysis
- Volatile halogenated hydrocarbons in water
- Polychlorinated biphenyls (PCB) in water
- Detection of Acrylamide in food

Applications

- BTX (Benzene, Toluene, Xylene) detection
- Hydrocarbon-oil-index in water
- Determination of emissions in car cockpit materials

"One for All"

SupraSolv®
MS For GC-MS

Applications

- Analysis of Dioxins and Furans (PCDD/PCDF)
- Polycyclic aromatic hydrocarbons
- Pesticide analysis acc. QuEChERS
- Determination of phthalates in plastics

ECD

Electron Capture Detector

FID

Flame Ionization Detector

MS

Mass Spectrometric Detector

Dedicated Specifications SupraSolv® & UniSolv®

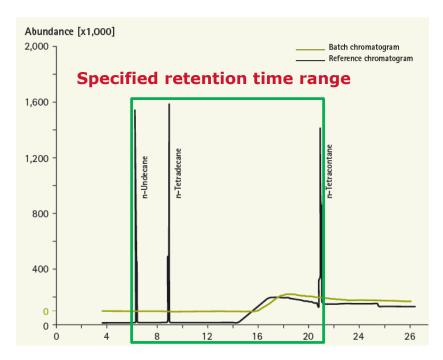
1.04371.0000 n-Hexane for gas chromatography ECD and FID SupraSolv®

	Spec. Values		
Purity (GC)	≥ 98.0	%	
Sum of hexane isomers + methylcyclopentane (GC)	≥ 99.8	%	
Identity (IR)	conforms		
residue on evaporation	≤ 3.0	mg/l	
Water	≤ 0.01	%	
Colour	≤ 10	Hazen	
GC/ECD (retention range 1,2,4-trichlorobenzene to			
decachlorobiphenyle			- 1
individual signals (lindane standard))	≤ 3	pg/ml	- 1
GC/FID (retention range n-undecane - n-tetracontane			- 1
individual signals (n- tetradecane standard))	≤ 3	ng/ml	- 1

suitable for residue analysis

1.00795.1000 n-Hexane for gas chromatography MS SupraSolv®

	Spec. Value	es
Purity (GC)	≥ 98.0	9/0
Sum of hexane isomers + methylcyclopentane (GC)	≥ 99.8	%
Identity (IR)	conforms	
residue on evaporation	≤ 3.0	mg/l
Water	≤ 0.01	%
Colour	≤ 10	Hazen
GC/MSD (retention range n-undecane - n-tetracontane; scaning area 30 -600 amu		
individual signals (n- tetradecane standard))	≤ 3	ng/ml


1.04369.0000 n-Hexane for organic trace analysis UniSolv®

	Spec. Value	s	
Purity (GC)	≥ 99.0	9/0	
Sum of hexane isomers + methylcyclopentane (GC)	≥ 99.9	%	
Identity (IR)	conforms		
residue on evaporation	≤ 3.0	mg/l	
Water	≤ 0.005	%	
Colour	≤ 10	Hazen	
GC/ECD			ı
retention range 1,2,4-trichlorobenzene to			ı
decachlorobiphenyle			ı
individual signals (lindane standard)	≤ 2	pg/ml	ı
retention range dichloromethane to 1,2,4-			ı
trichlorobenzene			ı
individual signals (tetrachloromethane)	≤ 1	ng/ml	ı
GC/FID (retention range n-undecane - n-tetracontane			ı
individual signals (n- tetradecane standard))	≤ 2	ng/ml	ı
GC/MSD (retention range n-undecane - n-tetracontane;			ı
scaning area 30 -600 amu			ı
individual signals (n- tetradecane standard))	≤ 2	ng/ml	ı
· "			Ш

 $Recommended\ for\ analysis\ of\ polychlorinated\ Dibenzo dioxins\ and\ polychlorinated\ Dibenzo furans\ (PCDD/F).$

SupraSolv® MS – marks the difference

Specification

1.00837.2500 Methanol for gas chromatography MS SupraSolv®

Specification			
Purity (GC)	≥ 99.8	%	
Identity (IR)	conforms		
Evaporation residue	≤ 3.0	mg/l	
Water	≤ 0.1	%	
Colour	≤ 10	Hazen	
GC/MSD (retention range n-undecane to n-tetracontane, scaning area 30 - 600 amu, individual signals (n- tetradecane standard))	≤ 3	ng/ml	

Suitable for residue analysis.

- Clear baseline accurate, reliable & reproducible results (no risk of misinterpretation, no loss of valuable samples, no need for repeat analysis)
- Batch-to-batch consistency time an cost saving
- Application tested quality application security

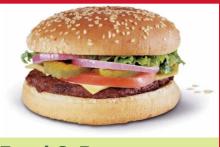
Target groups

Coca-Cola.

PEPSI

Contract Labs

Food analysis Environmental analysis Pharma analysis


Water & **Environmental**

Drinking water, (waste) water and soil analysis

Food & Beverage

pesticide analysis, dioxin detection, etc.)

Quality Control (e.g.

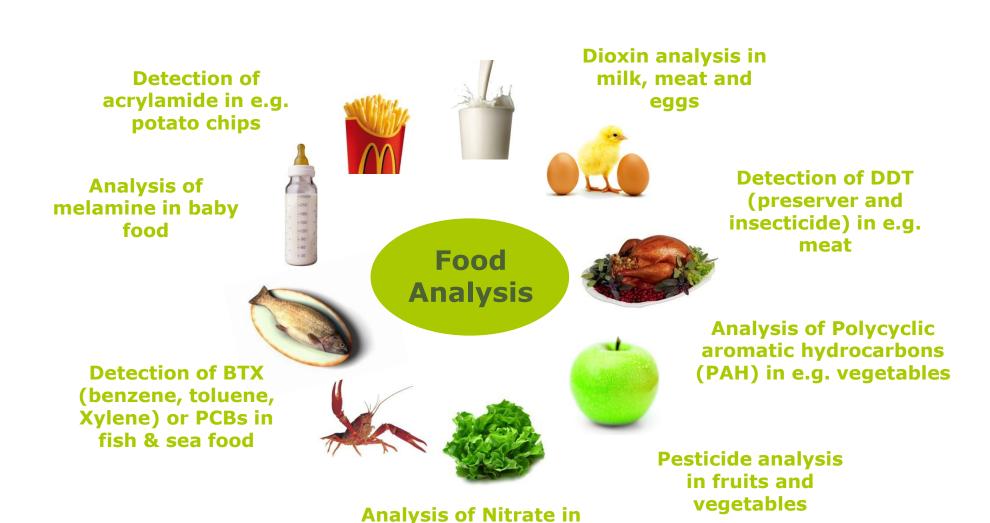
Pharmaceutical Industry

Quality Control & R&D (e.g. analysis of residual solvents)

Chemical Industry

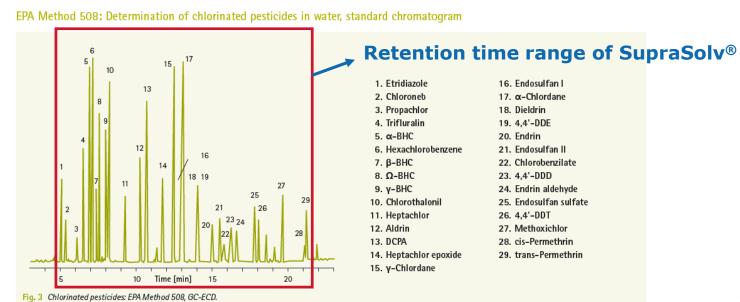
QC, R&D

Waste water control



Academia

R&D


GC applications Food & Beverage Industry

lettuce

Determination of pesticides in food & water according EPA method 508 by GC-ECD

Solvents:

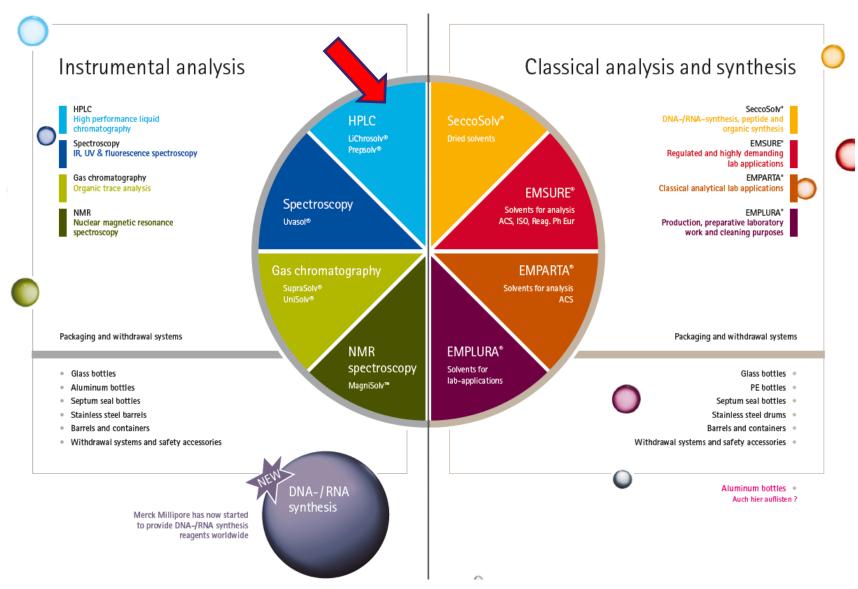
- 1.00012 Acetone ECD and FID SupraSolv®
- 1.06054 Dichloromethane ECD and FID SupraSolv®
- 1.01995 tert-Butyl methyl ether ECD and FID $_{\mbox{\sc SupraSolv}^{\mbox{\sc B}}}$

Determination of Pesticides in Crops using the QuEChERS method

- Method: GC-MS, LC/MS-MS
- Regulation: EN 15662:2007 : Foods of plant origin –
 Determination of pesticide residues using GC-MS and/ or LC-MS/MS - QuEChERS-method
- Solvent: 1.00665 Acetonitrile MS SupraSolv

• QuEChERS-method:

- Worldwide used method for food control
- Introduced in 2003 for pesticide residue analysis
- Provides high quality results in a fast, easy, and inexpensive approach
- Follow-up studies have further validated the method for > 200 pesticides


SupraSolv® & UniSolv® mark the difference

- Lowest impurities/ clear baseline accurate, reliable & reproducible results (no risk of misinterpretation, no loss of valuable samples, no need for repeat analysis)
- Widest retention time range most comprehensive range of applications
- Batch-to-batch consistency time an cost saving (avoidance of analysis repetition)
- Application tested quality application security
- Flexibility Top-products are also offered in 10L stainless steel barrels as standard pack size
- UniSolv® is suitable for all three main detection methods ECD, FID &
 MS one solvent quality for all applications

Solvents for analytical liquid chromatography - LiChrosolv®

HPLC: High Performance (Pressure) Liquid Chromatography

Analytical technique to separate, identify & quantify chemical & biological compounds.

Separation is depending on:

- Type of analysed substance
- Type of column
- Temperature
- ph value
- Flow rate of mobile phase
- Composition of mobile phase (solvent)

HPLC – what can you do with it?

Qualitative analysis

Identification of compounds by their retention time (= time it takes to elute from the column after injection) and/or spectra in MS/UV detector

Quantitative analysis

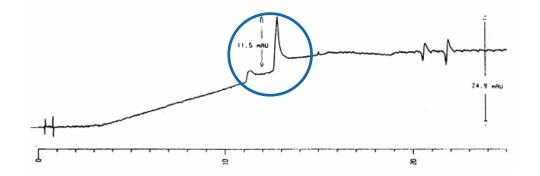
Measurement of compound concentration via peak height and peak area

Preparative chromatography

Preparation of pure compound by collecting / concentrating the compound for further studies

Trace analysis

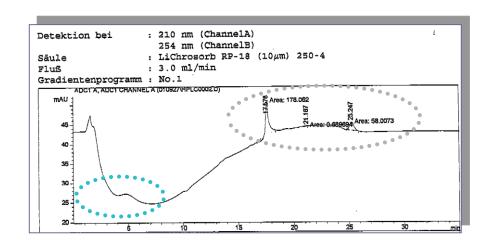
Of extremely low concentrations of harmful or toxic compounds with high resolution separations and very sensitive detectors



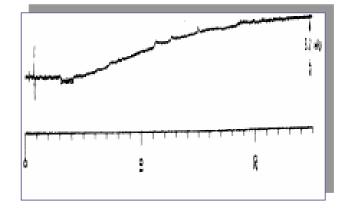
SOLVENTS FOR LIQUID CHROMATOGRAPHY LICHROSOLV® - AT A GLANCE

Why using a special HPLC grade?

Solvent impurities can result in ghost peaks!



→HPLC peak resolution & quantitative results are effected by solvents with lower quality


Compounds producing artefacts: Additives, Peroxides, Phtalates

Risks "using non suitable Acetonitrile @ 210 nm"

Risk due to enrichment process of impurities

Baseline drift due to trace impurities

Solvent impurities

No reliable HPLC result Loss in separation performance Reduced column lifetime

3 Grade-Program: Application Oriented

LiChrosolv®Isocratic Elution

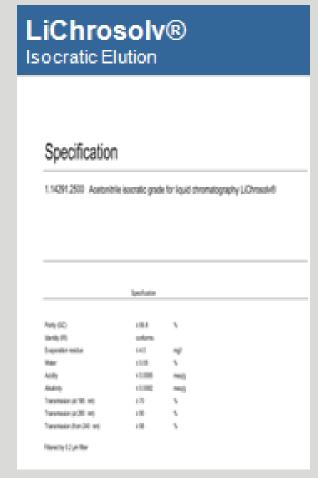
Detection method: UV

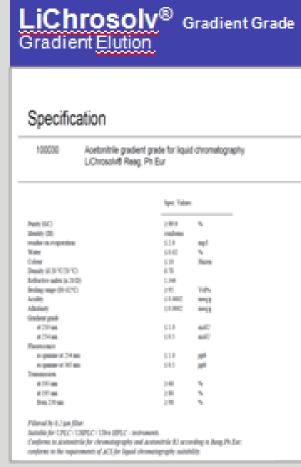
- For the analysis of simple matrix
- Applications: sample preparation & isocratic separation of similar polar, non polar compounds in QC
- Customer Segment: Food & Beverage, Environmental, Pharma, Chemical Industry

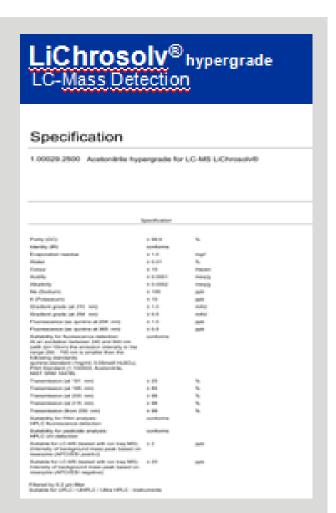
LiChrosolv® Gradient Grade Gradient Elution

Detection method: UV, Fluorescence

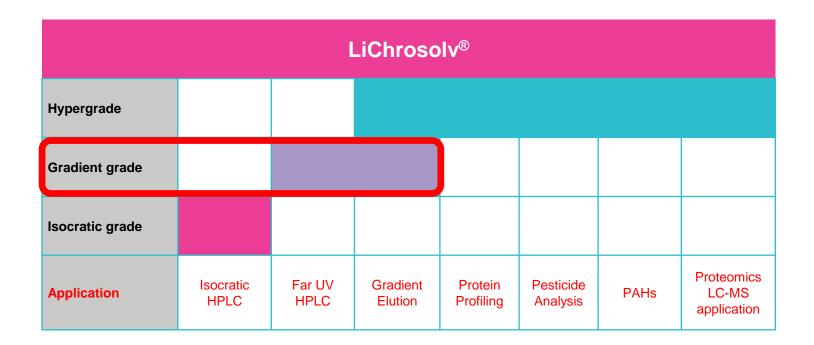
- Applications: sample preparation & analysis of complex, highly sensitive & demanding quality control, impurity profiling in QC, R&D for mixed samples of polar /non-polar compounds
- Customer Segment: Pharma, Chemistry, Cosmetics


LiChrosolv® hypergrade


LC-Mass Detection


- Detection method: UV, Fluorescence, Mass
- Applications:
 Protein Profiling
 Pesticide Analysis
 PAHs
 Proteomics LC-MS
 LC-MS routine analysis
- Customer Segment: Pharma, mainly R&D, Environmental QC

3 Grade - Application Oriented Program



Solvents for liquid chromatography LiChrosolv[®]

Different applications require different purity

Specification

1.00030.2500 Acetonitrile gradient grade for liquid chromatography LiChrosolv® Reag. Ph Eur

		Specification	
	Purity (GC)	≥ 99.9	%
	Identity (IR)	conforms	
	Evaporation residue	≤ 2.0	mg/l
	Water	≤ 0.02	%
	Colour	≤ 10	Hazen
	Density (d 20 °C/20 °C)	0.78	
	Refractive index (n 20/D)	1.344	
	Boiling range (80-82°C)	≥ 95	% (v/v)
	Acidity	≤ 0.0002	meq/g
	Alkalinity	≤ 0.0002	meq/g
	Gradient grade (at 210 nm)	≤ 1.0	mAU
•	Gradient grade (at 254 nm)	≤ 0.5	mAU
Ť	Fluorescence (as quinine at 254 nm)	≤ 1.0	ppb
	Fluorescence (as quinine at 365 nm)	≤ 0.5	ppb
	Transmission (at 193 nm)	≥ 60	%
	Transmission (at 195 nm)	≥ 80	%
•	Transmission (from 230 nm)	≥ 98	%

Filtered by 0.2 µm filter.

Suitable for UPLC / UHPLC /Ultra HPLC - instruments.

Conforms to Acetonitrile for chromatography and Acetonitrile R1 according to Reag.Ph Eur;

conforms to the requirements of ACS for liquid chromatography suitability.

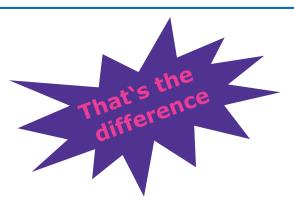
What's different?

M

Specification

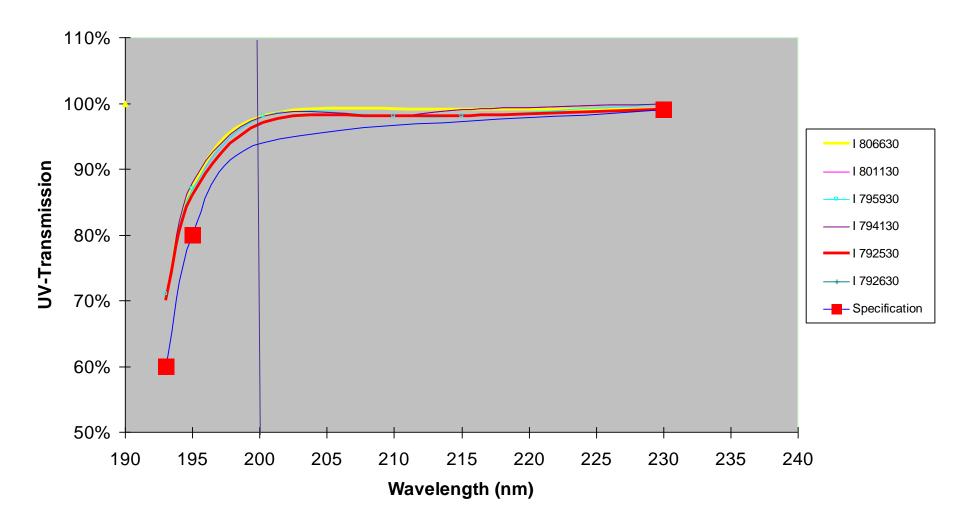
1.00030.2500 Acetonitrile gradient grade for liquid chromatography LiChrosolv® Reag. Ph Eur

Reag. PhEur and ACS Specification

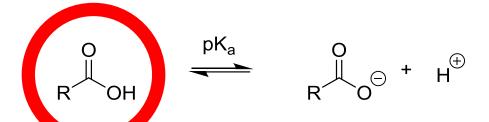

Specification

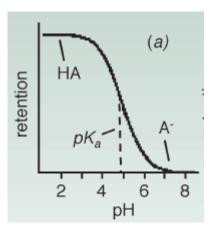
Conforms to Acetonitrile for chromatography and Acetonitrile R1 according to Reag.Ph Eur; conforms to the requirements of ACS for liquid chromatography suitability.

Water		
Colour	≤ 10	Hazen
Density (d 20 °C/20 °C)	0.78	
Refractive index (n 20/D)	1.344	
Boiling range (80-82°C)	≥ 95	% (v/v)
Acidity	≤ 0.0002	meq/g
Alkalinity	≤ 0.0002	meq/g
Gradient grade (at 210 nm)	≤ 1.0	mAU
Gradient grade (at 254 nm)	≤ 0.5	mAU
Fluorescence (as quinine at 254 nm)	≤ 1.0	ppb
Fluorescence (as quinine at 365 nm)	≤ 0.5	ppb
Transmission (at 193 nm)	≥ 60	%
Transmission (at 195 nm)	≥ 80	%
Transmission (from 230 nm)	≥ 98	%


Filtered by 0.2 µm filter.
Suitable for UPLC / UHPLC /Ultra HPLC - instruments.

Conforms to Acetonitrile for chromatography and Acetonitrile R1 according to Reag. Ph Eur; conforms to the requirements of ACS for liquid chromatography suitability.


Quality Assurance (1) - **UV Transmission**



Why using buffers at all in HPLC and LC-MS...?

- Buffers are used in RP-HPLC separations to control the retention of ionizable compounds.
- This is to suppress ionization of analytes in order to maximize sample retention.

- Ideally, the mobile phase pH is at least 2 pH units below (acids) or above (bases) the sample pKa.
- For the most effective buffering, a buffer should be carefully chosen and used within ± 1 pH unit of the buffer's pKa.
- For LC-UV assays, phosphate and acetate buffers are most popular.
- For LC-MS applications, the buffer must be volatile. Various combinations of formate, acetate, ammonia and bicarbonate are most popular for LC-MS work.

Lichropur® HPLC Reagents

Product No.	Name	Description	Package Size
5.43804	Formic acid	100%	100, 250 ml
5.43808	Acetic acid	100%	100, 250 ml
5.43827	Sulfuric acid	96%	100, 250 ml
5.43828	o-Phosphoric acid	85%	100, 250 ml
5.43830	Ammonia solution	25%	100, 250 ml
5.43832	Sodium chloride		100, 250 ml
5.43833	Sodium acetate trihydrate		100, 250 ml
5.43834	Ammonium acetate		100, 250 ml
5.43835	Ammonium hydrogen carbonate		100, 250 ml
5.43837	Ammonium dihydrogen phosphate		100, 250 ml
5.43838	Di-Sodium hydrogen phosphate anhydrous		100, 250 ml
5.43839	Di-Potassium hydrogen phosphate anhydrous		100, 250 ml
5.43840	Sodium dihydrogen phosphate anhydrous		100, 250 ml
5.43841	Potassium dihydrogen phosphate anhydrous		100, 250 ml

Lichropur® HPLC Reagents HPLC Reagents

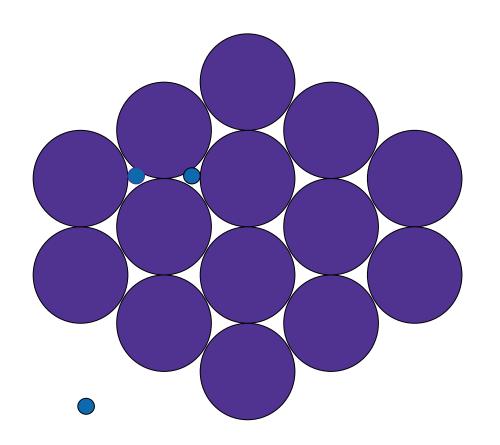
We offer LiChropur® reagents ideal for HPLC analysis.

These reagents are tested for inorganic impurities, including Al, Ca, Cu, Fe, K, Mg and Na.

- QC performed using a HPLC suitability gradient test at 220, 254 and 280 nm.
- Filled under clean room conditions
- Extensive impurity profile of the product on the Certificate of Analysis

Al: \leq 0.050 ppm; Ca: \leq 0.2 ppm; Cu: \leq 0.020 ppm; Fe: \leq 2.0 ppm; K: \leq 0.10 ppm; Mg: \leq 0.50 ppm; Na: \leq 0.50 ppm

HPLC-gradient suitability test (220, 254, 280 nm) chromophoric impurities based on 4'-hydroxyacetophenon



Fast chromatography – UHPLC

UHPLC column 1,7 μ m / 6 < 0,3 μ m means high risk of blockage

Faster
Short & thin columns
Higher separating capacity
Particle diameter > 2µm

Columns packed with 1.7µm particles tend to clogg easily, because the space in between the particles is only 0.3µm

1.00030.2500 Acetonitrile gradient grade for liquid chromatography LiChrosolv® Reag. Ph Eur

	Spec. Values	
Purity (GC)	≥ 99.9	96
Identity (IR)	conforms	
residue on evaporation	≤ 2.0	mg/l
Water	≤ 0.02	96
Colour	≤ 10	Hazen
Density (d 20 °C/20 °C)	0.78	
Refractive index (n 20/D)	1.344	
Boiling range (80-82°C)	≥ 95	Vol%
Acidity	≤ 0.0002	meq/g
Alkalinity	≤ 0.0002	meq/g
Gradient grade		
at 210 nm	≤ 1.0	mAU
at 254 nm	≤ 0.5	mAU
Fluorescence		
as quinine at 254 nm	≤ 1.0	ppb
as quinine at 365 nm	≤ 0.5	ppb
Transmission		
at 193 nm	≥ 60	96
at 195 nm	≥ 80	96
from 230 nm	≥ 98	96

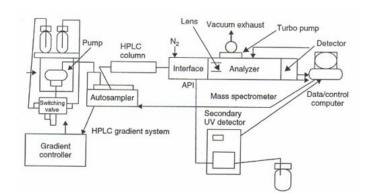
Filtered by 0.2 µm filter Suitable for UPLC / UHPLC / Ultra HPLC - instruments

LC-MS Method

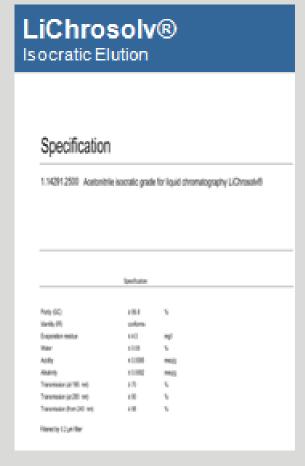
Is it necessary to have a better grade of solvent and better column purity for LC-MS? YES!

BECAUSE:

With standard solvents & columns, trace impurities cause unwanted background signals in LC-MS which reduce sensitivity and cause complex spectra with low reproducibility - compared to HPLC with standard UV detectors.



LC-MS requires improved procedures, compared to HPLC with UV detectors


Criteria LC-MS / Optimized Performance

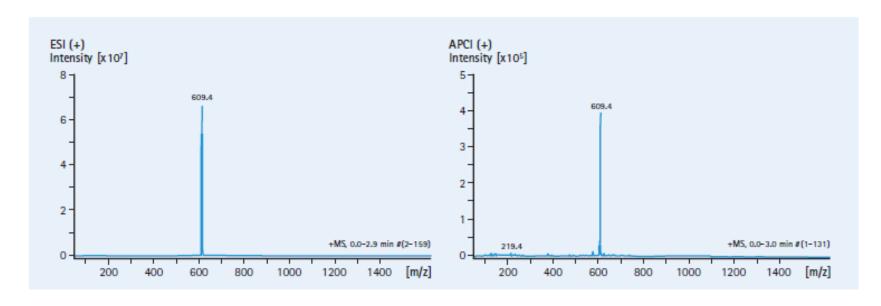
- High ionisation efficiency
- High reproducibility of the ionisation signal
- Low "background" signals and low adduct formation
- Low "ion suppression" due to solvents impurities
- Low contamination of the ionisation source

3 Grade - Application Oriented Program

LiChrosolv® Gradient Grade Gradient Elution

Specification Acetonitrile gradient grade for liquid chromatography LiChrosoluti Reag, Ph Eur. Spec Telesco Note that 2000 Seet Dimalana. 9140 Colone Design SERVICE CO. 100 (41,000) (200) Miller (1982) 9993 State Senter 685 a Second Contract of the last required 25 as manufacture of 100 may 4000 3.40 0.00 417.00 Step 27 year Friend bod Can file. Sanda Sr CPCC/CRPCC/CRs SPSC - Individuals. Copleme to Assistantistic for chromotography and Assistatistic ID, according to Boog Ph. Eur. confirms to the requirements of ACE for liquid chromotography suitability

LiChrosolv® hypergrade LC-Mass Detection

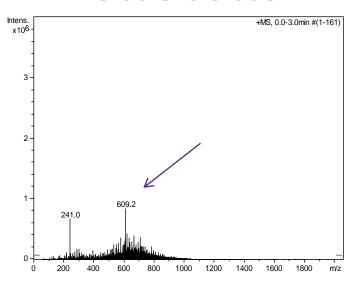

1.00029.2500 Acetonitrile hypergrade for LC-MS LiChrosolv®

Specification

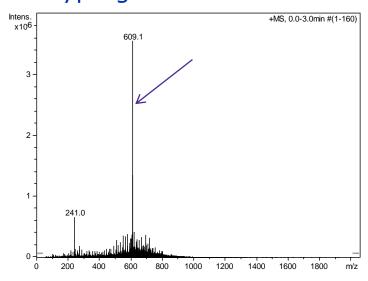
	CONTRACTOR OF		
Purity (IIII)	1.000	%	
Marriery (PT)	and the same		
Commenter market	10.500	med	
Titalian .	4.50	N-	
fotor	1.79	Team	
Action .	4.1	many	
TO A	110000	TOTAL	
Na Chadrano	1000	path.	
S. Chambert	4.10	96	
Seattlest grade on 2011 news	0.00	endos:	
Streethorn productor Street need	1110	ment .	
Commence in program of 1994 and	0.00	partie.	
Parameter by parameter 4000 and	1110	107	
A CONTROL OF THE PARTY OF THE P	contorna		
Committee of The Arts	11.00	4	
Committee of 195 and	100	%	
Commission of 2001 and	1.00	No.	
Committee of P.S. and	14/00	%	
Commission (No. 100) and	1.00	No.	
Substitute from analysis IPLS Surrecovery detection	and one		
Substitute for production analysis:	accessoring.		
between two of 40% beauties and our way falls, between two beauty-count manuscripts in terms on temporary (ACC) (I.S. possible)	1.0		
Substitute for (vil) 60% (number) and the rear 60% of Statements of Sandagement States (seed, Sandage or management (APS) (SSS) (negative)	139		
Manadity 63 yes filled business for orbital statistics of the orbital state	umente		

Example: Acetonitrile LiChrosolv® hypergrade

Mass spectrum of LiChrosolv® Acetonitrile hypergrade (100029). Mobile phase Acetonitrile special LC-MS grade. Intensity of single background mass peak based on resperine standard (m/z 609.4) in e.g. ESI (+) and APCI (+) mode.


ESI = Electron Spray Ionization

APCI = Atmospheric Pressure Chemical Ionization

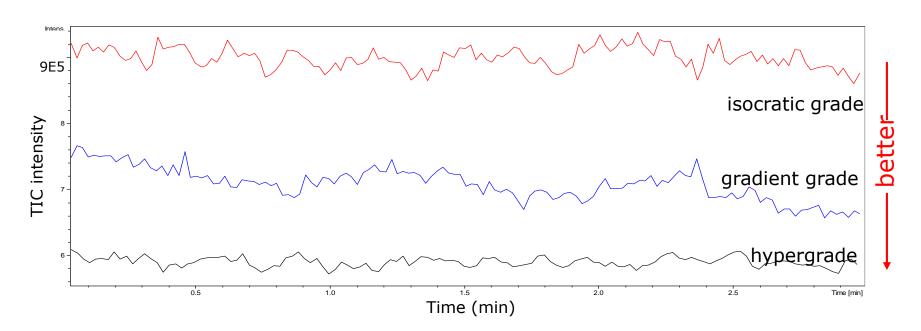


Main problem: low ionization efficiency

Hypergrade LC-MS Grade

- The mass spectra of different acetonitrile grades show clearly the variation in the intensity of the reserpine signal ($[M+H]^+ = 609$) as well as the extent of the background signals.
- The differences in the intensity of the reserpine signal are caused by ion suppression.

 This effect occurs due to interfering trace contaminants that can be present in acetonitrile.

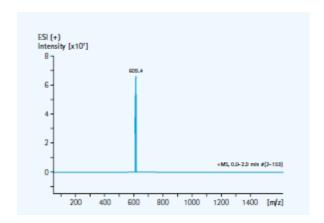


TIC (Total Ion Current) in different eluent qualities

MS grade solvents prevent contamination

- Minimization of contaminant peaks & ion suppression
- Maximization of sensitivity (low background noise)

Combined TICs of the analysis of three different acetonitrile qualities:



Merck: Specification for ACN, Methanol, Water for LC-MS suitability

Acetonitrile hypergrade LC-MS suitability	Cat. No. 100029 Spec. values	Methanol hypergrade LC-MS suitability	Cat. No. 106035 Spec. values
Purity (GC)	≥ 99.9 %	Purity (GC)	≥ 99.9 %
Identity (IR)	conforms	Identity (IR)	conforms
Residue on evaporation	≤ 1.0 mg/l	Residue on evaporation	≤ 1.0 mg/l
Water	≤ 0.01 %	Water	≤ 0.01 %
Color	≤ 10 Hazen	Color	≤ 10 Hazen
Acidity	≤ 0.0001 meq/g	Acidity	≤ 0.0002 meq/g
Alkalinity	≤ 0.0002 meq/g	✓ Alkalinity	≤ 0.0002 meq/g
Al (Aluminum) *	≤ 10 ppb	Al (Aluminum) *	≤ 10 ppb
Ca (Calcium) *	≤ 10 ppb	Ca (Calcium) *	≤ 10 ppb
Fe (Iron) *	≤ 10 ppb	Fe (Iron) * Ma (Magnesium) *	≤ 10 ppb
Mg (Magnesium) *	≤ 10 ppb	Mg (Magnesium) *	≤ 10 ppb
Na (Sodium) *	≤ 50 ppb	Na (Sodium) *	≤ 100 ppb
K (Potassium) *	≤ 5 ppb	€ K (Potassium) *	≤ 5 ppb
Every other single metal (ICP-MS) *	≤ 5 ppb	Every other single metal (ICP-MS) *	≤ 5 ppb
Gradient grade		Gradient Grade	
at 210 nm	≤ 0.8 mAU	at 220 nm	≤ 2.0 mAU
at 254 nm	≤ 0.3 mAU	at 235 nm	≤ 1.0 mAU
Fluorescence		Fluorescence	
as quinine at 254 nm	≤ 1 ppb	as quinine at 254 nm	≤ 1 ppb
as quinine at 365 nm	≤ 0.5 ppb	as quinine at 365 nm	≤ 0.5 ppb
Transmission		Transmission	
at 191 nm	≥ 25 %	at 210 nm	≥ 35 %
at 195 nm	≥ 85 %	at 220 nm	≥ 60 %
at 200 nm	≥ 96 %	at 230 nm	≥ 75 %
at 215 nm	≥ 98 %	from 260 nm	≥ 98 %
from 230 nm	≥ 99 %	Suitability for LC-MS	
Suitability for PAH analysis	conforms	(tested with ion trap MS); Intensity of single background	mass peak based on reserpine:
(HPLC fluorescence-detection)		Mode: ESI 200 μl pos APCI 200 μl pos	≤ 2 ppb
At an excitation between 240 and 600 nm (with t Δ	λ = 10 nm) the emission intensity	Mode: ESI 200 μl neg APCI 200 μl neg	≤ 20 ppb
in the range of 250 – 700 nm is smaller then the follows (1 ng/ml; 0.05 mol/l H_2SO_a), PAH Standard (1:100,000)		Filtered by 0.2 µm stainless steel filter Suitable for PAH-analy Fast HPLC-instruments * = enhanced specifications	is Suitable for UPLC UHPLC Ultra
Suitability for pesticide analysis (HPLC UV-detection)	conforms		

Ion / Metal - information

ESI = Electron Spray Ionization

APCI = Atmospheric Pressure Chemical Ionization

Suitability ESI/APCI (+) & ESI/APCI (-) mode

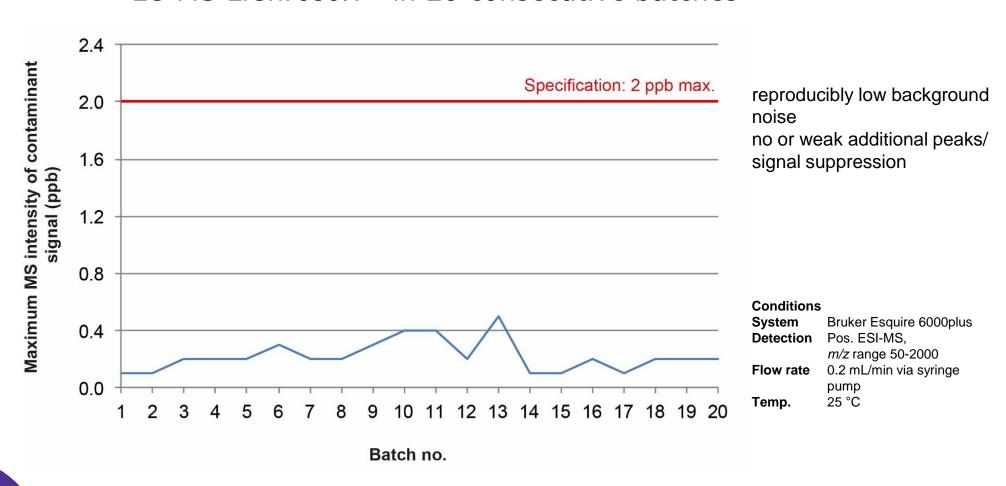
rittered by 0.2 µm stainless steer filter | Sultable for Ortic | Orific | Oltra rast Hrtic-instru

(tested with ion trap MS); Intensity of background mass peak based on reserpine:

≤ 2 ppb

Suitable for Q-TOF LC-MS | * = enhanced specifications

Mode: ESI 200 µl pos | APCI 200 µl pos


Mode: ESI 200 µl neg | APCI 200 µl neg

Suitability for LC-MS

Sensitivity in MS

Batch-to-batch reproducibility of acetonitrile hypergrade for LC-MS LiChrosolv® in 20 consecutive batches

LiChrosolv® hypergrade Portfolio – pure solvents

1.00029	Acetonitrile Lichrosolv® hypergrade for LC-MS
1.03649	Ethyl acetate Lichrosolv® hypergrade for LC-MS
1.03654	Heptane Lichrosolv® hypergrade for LC-MS
1.03701	Hexane Lichrosolv® hypergrade for LC-MS
1.06035	Methanol Lichrosolv® hypergrade for LC-MS
1.02781	2-Propanol LiChrosolv® hypergrade for LC-MS
1.15333	Water for chromatography LiChrosolv® (LC-MS grade)

LiChrosolv® hypergrade Portfolio- ready to use blends

Acetonitrile with 0.1% (v/v) Acetic acid hypergrade for LC-MS LiChrosolv®
Acetonitrile with 0.1% (v/v) Formic acid hypergrade for LC-MS LiChrosolv®
Acetonitrile with 0.1% (v:v) Trifluoroacetic acid hypergrade for LC-MS LiChrosolv®
Water with 0.1% (v/v) Acetic acid hypergrade for LC-MS LiChrosolv®
Water with 0.1% (v/v) Formic acid hypergrade for LC-MS LiChrosolv®
Water with 0.1% (v:v) trifluoroacetic acid hypergrade for LC-MS LiChrosolv®

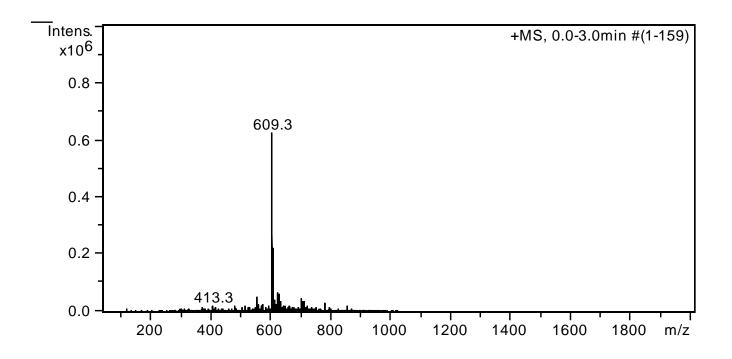
Lichropur® LC-MS Reagents **Product Overview**

Product No.	Name	Description	Package Size
5.33001	Acetic acid	100% for LC-MS $$ Lichropur $^{ ext{ iny R}}$	50 ml
5.33002	Formic acid	98-100% for LC-MS Lichropur®	50 ml
5.33003	Ammonia solution	25% for LC-MS Lichropur®	50 ml
5.33004	Ammonium acetate	for LC-MS Lichropur®	50 ml
5.33005	Ammonium hydrogen carbonate	for LC-MS Lichropur®	50 ml

Lichropur® LC-MS Reagents

LC-MS Reagents

We offer LiChropur® products specific for LC-MS analysis.


These reagents are tested for inorganic impurities, including Al, Ca, Cu, Fe, K, Mg and Na.

- QC performed using a standard reserpine test
- Filled under clean room conditions
- Extensive impurity profile of the product on the Certificate of Analysis
- Assay (acidimetric): ≥ 98.0%
- Colour: ≤ 10 Hazen
- Residue on ignition: ≤ 2 ppm
- Cation traces:
 - Al: \leq 5.0 ppb; Ca: \leq 10.0 ppb; Cu: \leq 1.0 ppb; Fe: \leq 5.0 ppb; K: \leq 5.0 ppb; Mg: \leq 2.0 ppb; Na: \leq 5.0 ppb; NH₄+: \leq 10 ppm
- LC-MS suitability test

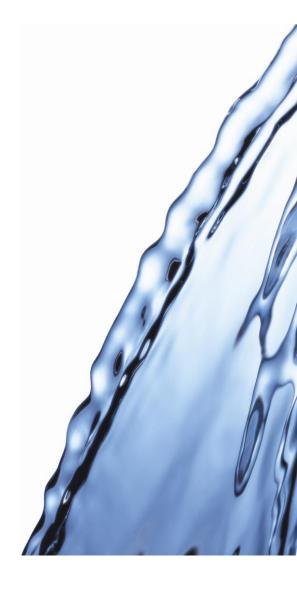
Lichropur® LC-MS Reagents Reserpine test

Mass spectrum ESI positive (flow injection analysis)

Reserpine

Measuring parameter	Specification value
ESI positive	< 2 ppb
ESI & APCI negative	< 20 ppb

No signal should be greater than [M+H] = 609



LiChrosolv® hypergrade marks the difference

- High ionization efficiency
- Minimal baseline noise
- Low level of ionic background
- Reduced metal adduct formation

Superior resolution & sensitivity

Solvent storage

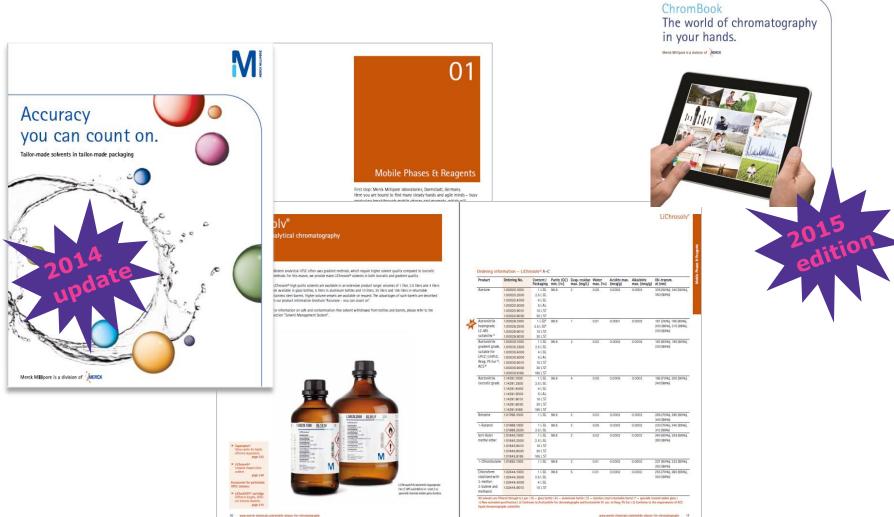
Solvent storage (water and organic) in

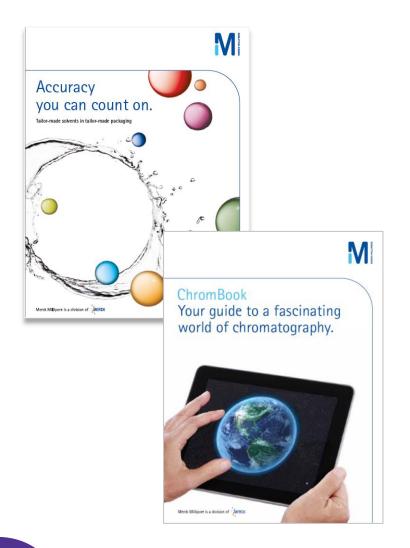
- surface treated amber glass (original Merck packaging) or
- borosilicate glass

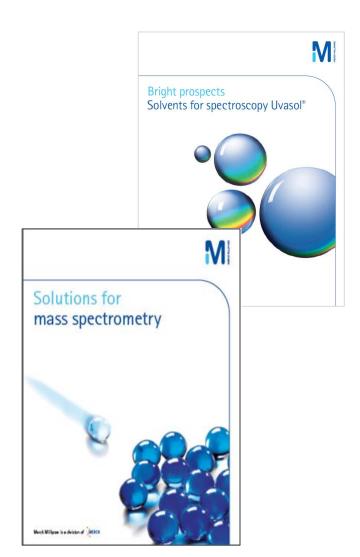
Standard clear glass bottles: Dissolution of silica and alkali, adduct formation [M+X]+ possible

Bottle caps/adapters

- professional Merck equipment only, directly mounted to original bottle (see image)
- avoid decanting
- no homemade solvent tubing solutions
- → solvent purity maintained, low background noise



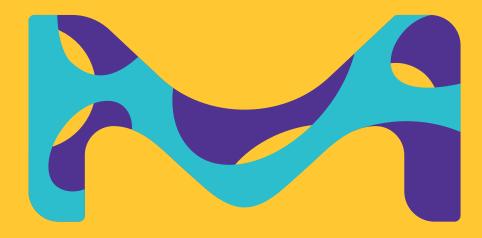

Supporting Literature



M

Information Variety

LiChrosolv® marks the difference


- Safety through reliable quality avoids misinterpretation of analytical results; saves cost- & time-intensive repetition of analysis
- Reduced baseline drift for better separation performance
- Interference free baseline for better reproducibility
- Enhanced sensitivity due to lower basic absorbance

Convenience

- No need for filtration, already done through 0.2 μm stainless steel filters (CoA)
- No blank run necessary due to high batch-to-batch consistency (less solvent consumption, winning time & money)
- "Audit resistant"

Ačiū!

