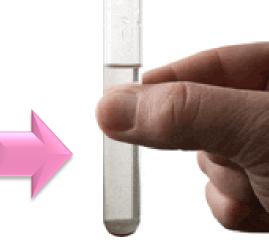
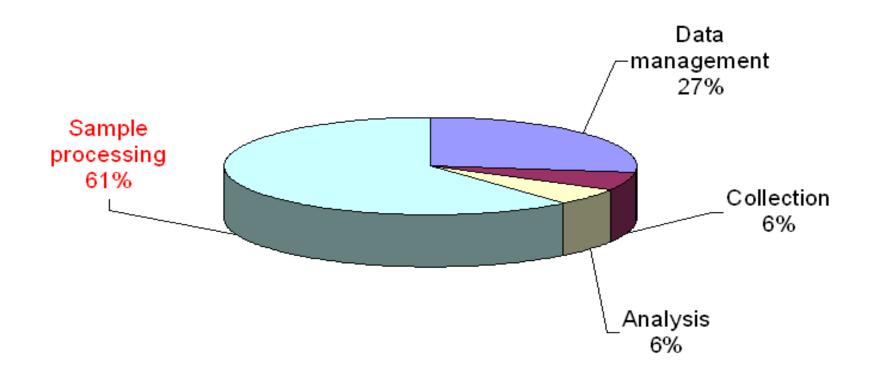
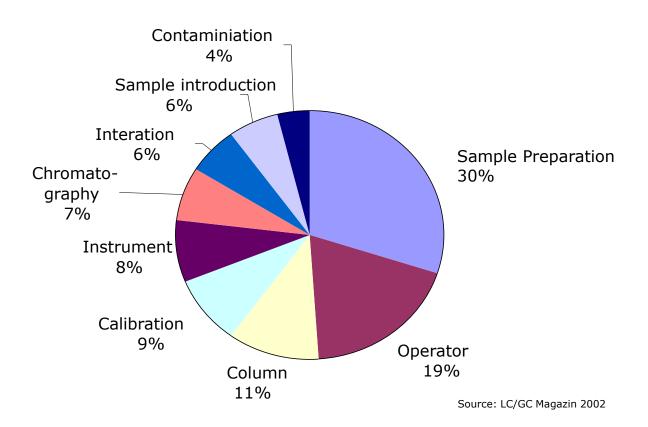
Intro to sample prep: SPE and SPME


Irina Galushko, irina.galushko@merckgroup.com

Why Sample Prep?

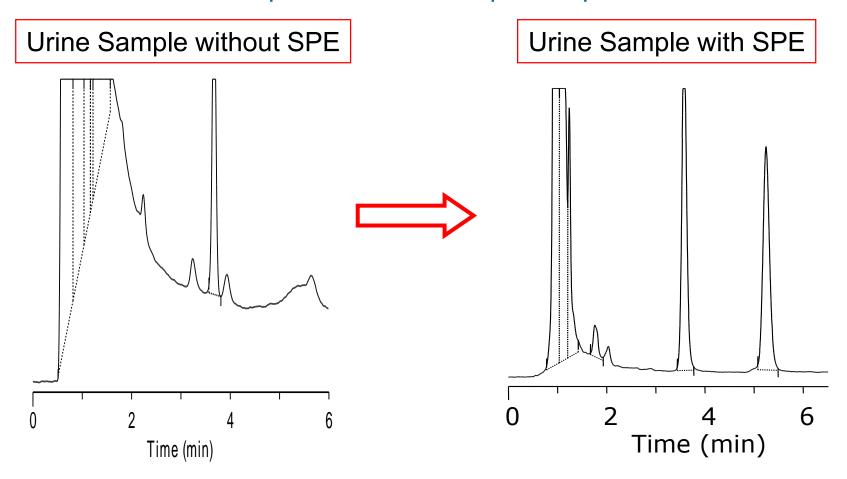
May require a unique sample prep solution...





Time Spent on the Analytical Process

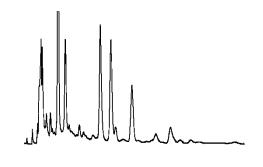
Sample prepSources of Chromatographic Errors



Real World & Real Samples

The Importance of Sample Preparation

Why is sample preparation required?


Collected Sample

GC, HPLC, or LC-MS/MS Analysis

<u>Current Sample = Unsuitable for further analysis!!!... Why?</u> **Too dirty**- contains other sample matrix components that interfere with the analysis

Too dilute- analyte(s) not concentrated enough for quantitative detection

Present sample matrix not compatible with or harmful to the chromatographic column/system

SPE Formats

Sorbent particles held securely in place to withstand the force of the liquid flow.

Tubes

96-well plates

Disks

Loose/bulk sorbent (QuEChERS)

Online SPE

On the Inside: SPE Sorbents (Packing Materials)

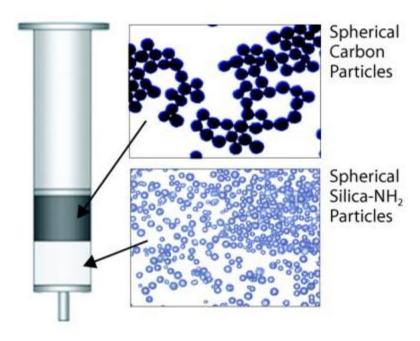
The sorbent is the component of the tube responsible for the extraction. Most SPE sorbents are also used in HPLC applications, although with large particles in SPE. Some of the most common are:

Silica-based

- Reversed phase (C18, C8, cyano, phenyl)
- Normal phase (silica, diol, NH₂)
- Ion exchange (SAX, WCX, SCX)

Carbon-based

Polymer-based


- Various compositions
- Different functionalities

Others

- Florisil® (magnesium silicate)
- Alumina

Mixed-bed

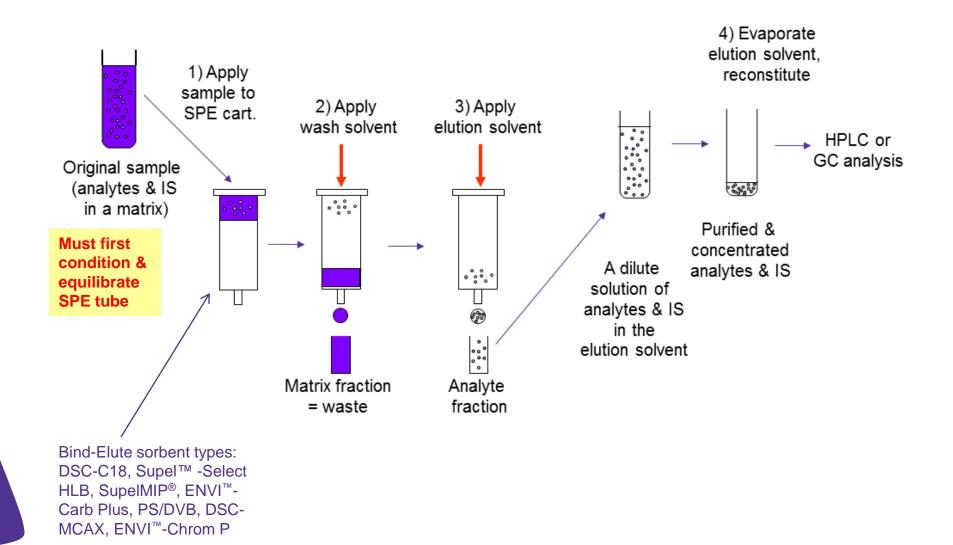
Combinations of nearly any of the above are possible in sequential layers

Supel[™] Sphere dual-layer

SPE Strategies

There are 2 different elution strategies in SPE. Which one to choose depends on the goal of the extraction.

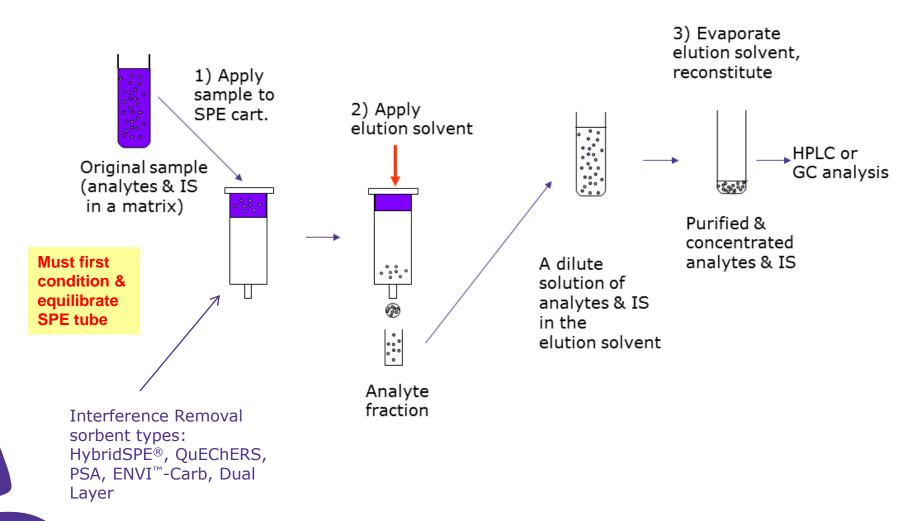
1. Bind-Elute Strategy


- Most common
- Bind: Analytes bind to tube, unwanted matrix components are washed off
- Elute: Eluant changed to remove analytes from tube
 - Different eluents can be used to fractionate the analytes
- Analytes are concentrated via evaporation prior to HPLC or GC analysis
- Sorbent types employing this: DSC-C18, Supel™-Select HLB, SupelMIP®, ENVI™-Carb Plus, PS/DVB, DSC-MCAX, ENVI™-Chrom P

2. Interference Removal Strategy

- Bind all unwanted matrix components and allow analytes to pass through during the sample loading stage
- Like chemical filtration
- Sorbent types employing this: HybridSPE®, QuEChERS, PSA, ENVI™-Carb, Dual Layer

Bind-Elute Strategy



Interference Removal Strategy

"Chemical Filtration"

Sample with Internal Standard in Matrix \rightarrow Matrix adsorbed \rightarrow Analytes & IS pass

Well-Established SPE Product Lines

Discovery®

Pharmaceutical focus

Tube and 96-well plates

Supelclean™ ENVI™

Environmental focus

ENVI™-Carb is a key product

Supel[™]-Select

Polymeric, "Universal SPE"

ENVI™-DSK™ disks

Porous glass fiber membranes embedded with sorbent particles

Sample Prep Key Products for **Food Analysis**

Overcoated SPME

Physically robust fiber for direct immersion that is less prone to chemical fouling.

Supel™ QuE

- QuEChERS tubes and supplies
- Pesticide Residue, PAH, PCB, PDBE analysis

Supelclean™ Ultra

 Dual layer cartridge for the cleanup of difficult matrices Supel™ Tox such as dry commodities (tea, spices, coffee, etc.)

Removes interferences associated with mycotoxin analysis

Supel™MIP

- Molecularly imprinted polymers
- Highly selective for analytes in difficult matrices

Supel™-Select Polymeric SPE

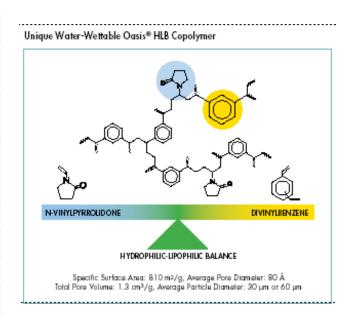
Yes, this can be used for food too!

Supelclean™ EZ-POP NP

Simple, effective extraction of lipophilic persistent organic pollutants (POPs) from oily samples

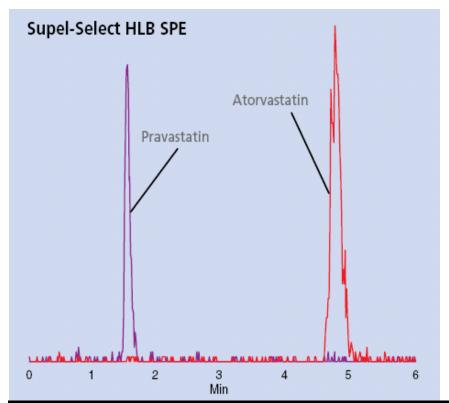
Supel™Genie On-line SPE

Eliminates human error and reduces labor cost



Supel-Select: What is Hydrophilic Polymer SPE?

Polymer chromatographic media designed for SPE Comprises of a hydrophilic component and a hydrophobic component:

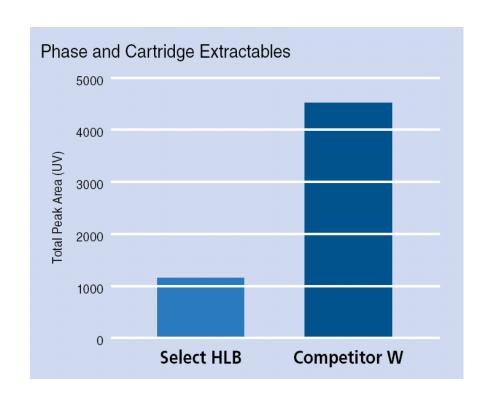

- Hydrophilic component examples:
 - N-vinyl pyrilidone, methacrylate, hydroxyl, vinylamidizol
- Hydrophobic component examples:
 - Polystyrene, divinyl benzene

HLB Phase Chemistry:	Hydrophilic modified styrene polymer
SAX Phase Chemistry	Quaternary amine functionalized hydrophilic modified styrene polymer
SCX Phase Chemistry	Sulfonic acid functionalized hydrophilic modified styrene polymer
pH Compatibility:	0-14
Particle Size:	55-60 μm
MS Suitable:	Yes
Surface Area:	400-410 m ² /g
Pore Volume:	0.88 mL/g
Pore Size:	87 Å

Supel-Select HLB: Statins from Rat Plasma

Total Ion Chromatogram (MRM, 4 pairs: 557.3/397.2) Rat Plasma spiked with 5 ng/mL Statins

		Absolute Recov	very ± RSD (n=3)	
	5 ng/mL spike		100 ng/mL spike	
	Pravastatin	Atorvastatin	Pravastatin	Atorvastatin
Supel-Select HLB	84 ± 8%	92 ± 5%	103 ± 4.2%	89 ± 3.9%
Competitor W	83 ± 17%	92 ± 2%	104 ± 2.2%	87 ± 1.1%
Competitor P	77 ± 5%	93 ± 2%	102 ± 3.0%	91 ± 1.3%

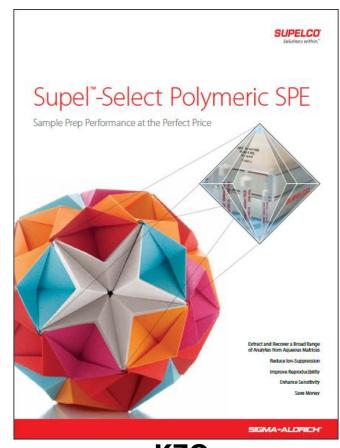

Supel-Select HLB: Minimum Extractables

Assays today require greater sensitivity

SPE phase chemistry and hardware should impart minimum extractables

Each lot is tested for:

- Recovery
- LC-UV & LC-MS cleanliness
- Particle size
- Density
- Pore size
- Pore volume



Supel-Select Polymeric SPE

Why are they so popular in SPE?

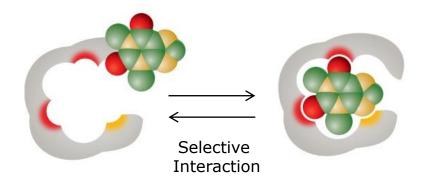
- "Water Wettable" do not dry out => highly reproducible
- Amenable to generic methodology
- Often referred to as a universal SPE phase
- Can retain an extremely broad range of compounds (polar to non-polar; acidic – basic)
- Retained compounds easily eluted/ desorbed with MeOH or similar solvent
- Reduces ion suppression in LC/MS
- Low UV and MS extractables
- 1000s of references using this technology

KZQ

Current Supelclean™ Ultra 2400 Cartridge

- •Cleanup difficult matrices prior to pesticide residue analysis by GC/MS/MS and LC/MS/MS
- Dry commodities (tea, spices, coffee, etc.), typically highly concentrated and with higher background than fresh samples
 - Pigments and oils
 - Not sufficiently cleaned by QuEChERS
- •Dual layer SPE cartridge (1 mL and 3 mL) containing:
- PSA removes acidic interferences
- C18 retains some hydrophobic interferences
- Specialized Carbon reduces pigmentation and allows for recovery of planar pesticides without toluene
- Z-Sep sorbent removes oils and some pigments, as was indicated in the cleanup of turmeric extracts for both GC and HPLC analysis

sigma-aldrich.com/supelcleanultra

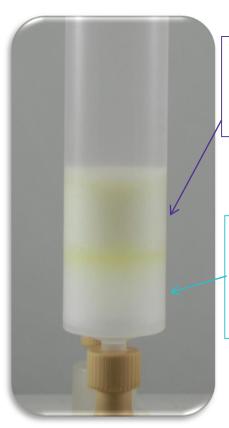


SupelMIP SPE - Molecularly Imprinted Polymer SPE

MIPs (molecularly imprinted polymers) are SPE products designed for the highly selective extraction of trace analytes from complex matrices

SupelMIP Phases and Methods Available for:

- PAHs in edible oil
- Non-steroidal anti-inflammatory drugs (NSAIDs) in wastewater and other sample matrices
- Nitroimidazoles in milk, eggs, and other food matrices
- Fluoroquinolones in bovine kidney, honey, and milk
- Chloramphenicol in milk, plasma, honey, urine and shrimp/prawns
- NNAL in urine
- TSNAs in urine and tobacco
- ß-agonists in tissue, urine and wastewater
- Clenbuterol in urine
- Riboflavin in milk
- Patulin in fruit matrices
- Aminoglycosides in animal tissue, cell culture, and honey
- Bisphenol A from broth or milk-based matrices



- Superior selectivity => reduced ion-suppression => achieve lower detection limits
- Robust & rapid methodology => Save time, money, & headache
- No method development req'd

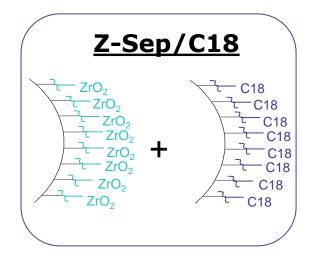
A New Approach: Analysis of Non-Polar POPs in Edible Oils

Supelclean™ EZ-POP NP: Dual-layer SPE Cartridge Containing Florisil® and Z-Sep/C18 Mix

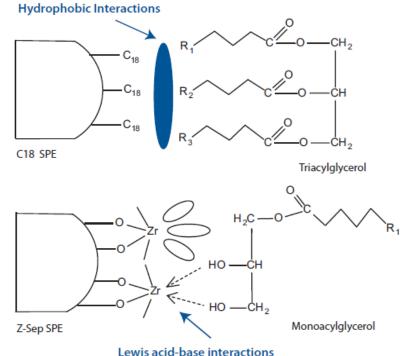
Florisil® layer:

retains background constituents with polar functionality such as fatty acids

Z-Sep/C18 layer:


retains fatty matrix through both Lewis acid/base and hydrophobic interactions

*Note: Yellow Color = Oil Matrix Removed From Sample


- Easy sample preparation methodology using minimal volume of solvent.
- Final sample extracts compatible with GC or HPLC.

Z-Sep/C18 And Proposed Lipid Retention Mechanism

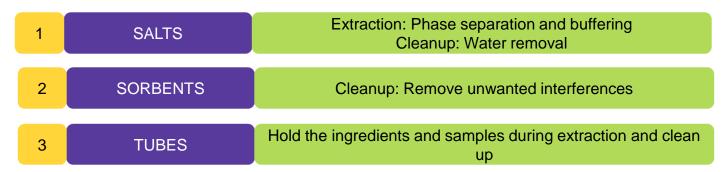
Supel™ Tox SPE for Mycotoxin Analysis

- Remove interferences associated with mycotoxin analysis in food and feed samples.
- Quick, simple, and reproducible sample cleanup solution
- Compared to the industry standard Immunoaffinity Columns (IAC):
 - Decrease sample prep time
 - Increase reproducibility
 - More user friendly

Complemented by an extensive line of Certified Reference Materials (CRMs)

sigma-aldrich.com/supeltox sigma-aldrich.com/mycotoxins

Supel Tox SPE Brochure (PFK)


QuEChERS Methodology for Pesticide Residue Analysis....and beyond

- Stands for: Quick, Easy, Cheap Effective, Rugged, Safe
- Loose extraction salts and cleanup sorbents in combination with shaking and centrifugation for purification
- Pesticide Residue, PAH, PCB, PDBE analysis

Official Methods:

- CEN Standard Method EN 15662
- AOAC Method 2007.01

How Does the QuEChERS Method Work?

Weigh 10 g homogenized sample Add 10 mL Acetonitrile (ACN) Add Internal Standard **Shake** Add Salt Extraction Tube: AOAC 2007.01 = Acetate Tube EN15662:2008 = Citrate Tube **Shake & centrifuge** Transfer ACN layer to cleanup/sorbent tube **Shake & centrifuge** Adjust the pH if necessary LC or GC Analysis

QuEChERS: What's Inside - Cleanup tube

SORBENTS

In AOAC and EN Official Methods

PSA – "Primary Secondary Amine" **Supelclean™ PSA**

Removes: fatty acids, organic acids, polar pigments, sugars

Carbon ENVI™-Carb

Removes: chlorophyll, carotenoids

C18 Discovery® DSC-18

Removes: lipids, non-polar compounds

Z-Sep Sorbents: Z-Sep, Z-Sep/C18, Z-Sep+

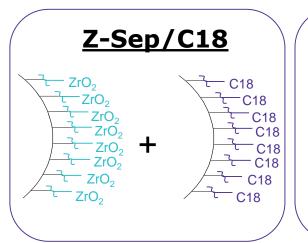
– Removes: lipids, pigments

Unique

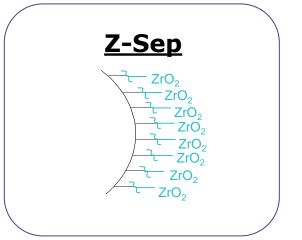
Role of the sorbent is to trap interferences that co-extract with the analytes.

QuEChERS Method: the choice of sorbent

Interference	PSA	C18	C18/PSA	ENVI-Carb	ENVI- Carb/ PSA	PSA/C18 /ENVI- Carb
Fats		X	X			X
Pigments	X			X	X	X
Sugars	X		X		X	X
Acids	X		X		X	X



Zirconia-based QuEChERS Sorbents Address Fatty Matrix Interferences



Z-Sep Sorbents for QuEChERS

- <u>Z-Sep/C18</u>: For fatty and/or pigmented matrices containing < 15% fat
- <u>Z-Sep+</u>: For fatty and/or pigmented matrices containing > 15% fat
- <u>Z-Sep</u>: For the analysis of hydrophobic analytes in fatty matrices

Proposed Retention Mechanism

Hydrophobic Interactions R₁ C₁₈ C₁₈ C₁₈ C₁₈ C₁₈ C₁₈ C₁₈ C₁₈ R₂ C₁₈ C₁₈

Lewis acid-base interactions

- Diminishes interferences from fatty matrices
- Removes various colors, specifically orange pigments
- Useful for analysis of pesticide residues
- Useful for analysis of PAH, PCB, PBDE and flame retardant analysis (specifically Z-Sep)

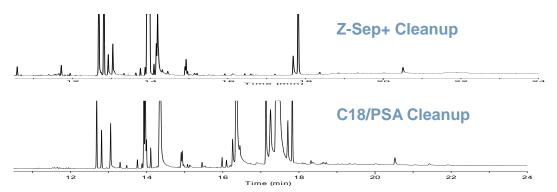
Case Study:

Pesticides in Avocado by QuEChERS & GC/MS

 Pesticide mix included hydrophobic compounds (e.g. organochlorines, hexachlorbenzene) and some other more polar classes all GC/MS amenable.

Extraction and Cleanup Procedures

- 1. Place 3 g of a homogenized avocado sample into a 50 mL centrifuge tube (Cat. No. 55248-U). Add spike solution if a spiked replicate.
- 2. Add 25 mL of acetonitrile and shake for one minute.
- 3. Add the contents of an Acetate Extraction Tube (Cat. No. 55234-U), and shake for one minute.
- 4. Centrifuge for five minutes.
- 5. Transfer 3 mL of the supernatant into the appropriate cleanup tube, Z-Sep+ (Cat. No. 55296-U) or PSA/C18 (Cat. No. 55229-U).
- 6. Shake for one minute, then centrifuge for three minutes.
- 7. Transfer 1 mL of the supernatant into an autosampler vial for GC/MS analysis.



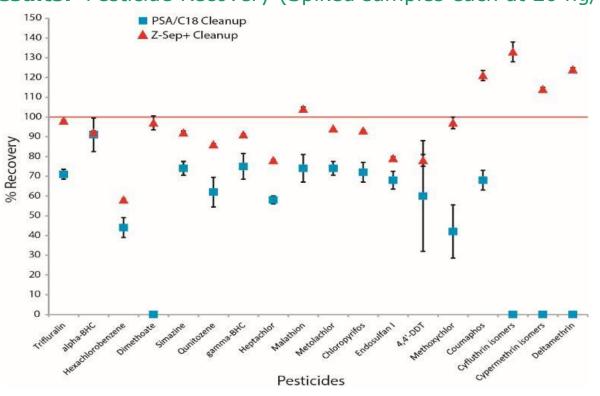
Case Study:

Pesticides in Avocado by QuEChERS & GC/MS

Less color remained in the extract cleaned with Z-Sep+ vs. PSA/C18

GC/MS Background

Pigment Removal


GC-MS analysis of avocado extracts (scan mode) in the same y-scale

Case Study:

Pesticides in Avocado by QuEChERS & GC/MS

Results: Pesticide Recovery (Spiked samples each at 20 ng/g)

- Z-Sep+ showed better recovery overall.
- PSA/C18: matrix interference prevented analysis of cyfluthrin, cypermethrin and deltametrin.
- Z-Sep+ showed better reproducibility than PSA/C18.

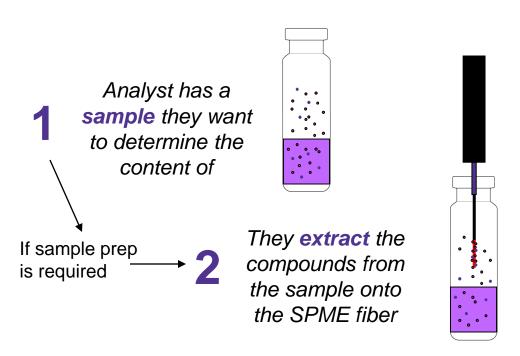
Solid Phase Microextraction (SPME)

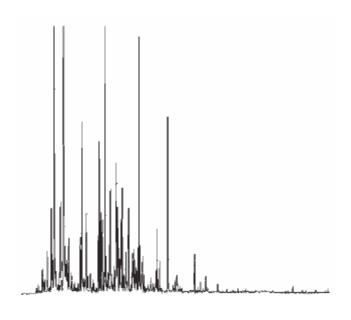
- Economical enrichment technique mainly for trace analysis
 - Semivolatiles & volatile (GC)
- Coated fused silica or metal fibers (adsorbent/particle & absorbent/film coatings)
- Initially for GC analysis, now extended to LC

Features:

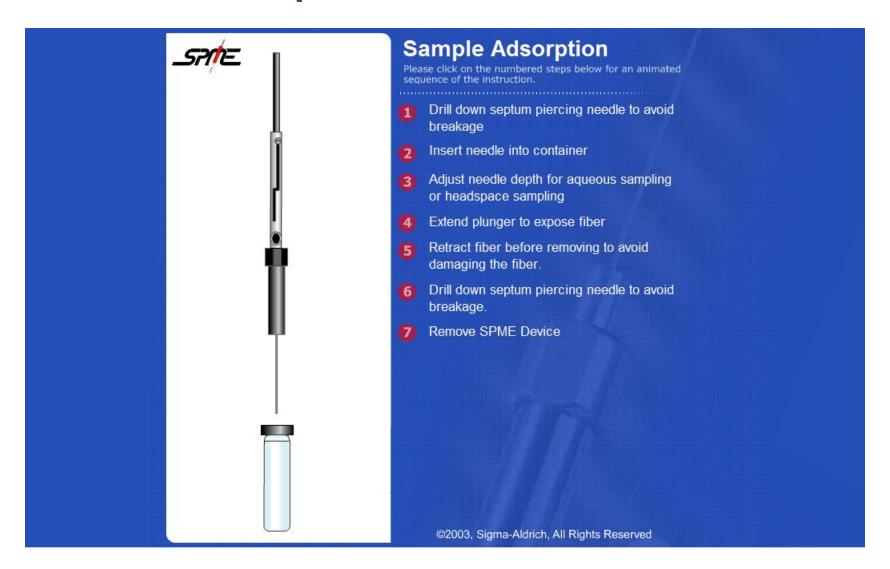
- · Very limited or no use of solvents
- All types of samples & matrixes
- Direct immersion or headspace
- Designs for manual, auto samplers and robots

Benefits:


- One-step extraction that is easy to automate
- Quantitative and reproducible Extractions
- · Portable (field use) and reusable



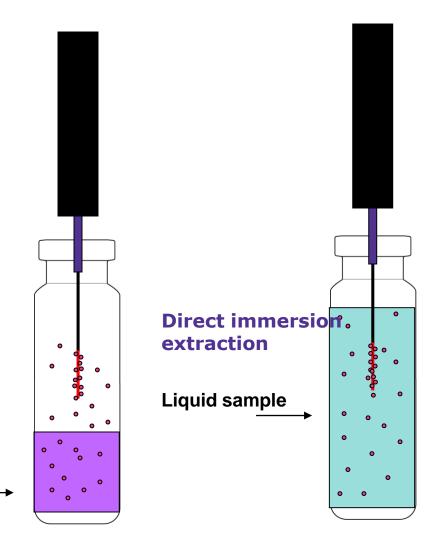
How SPME is used



They desorb the fiber into the GC instrument which tells them what was in the sample

GC chromatogram showing all the compounds that were extracted from the sample by the SPME fiber

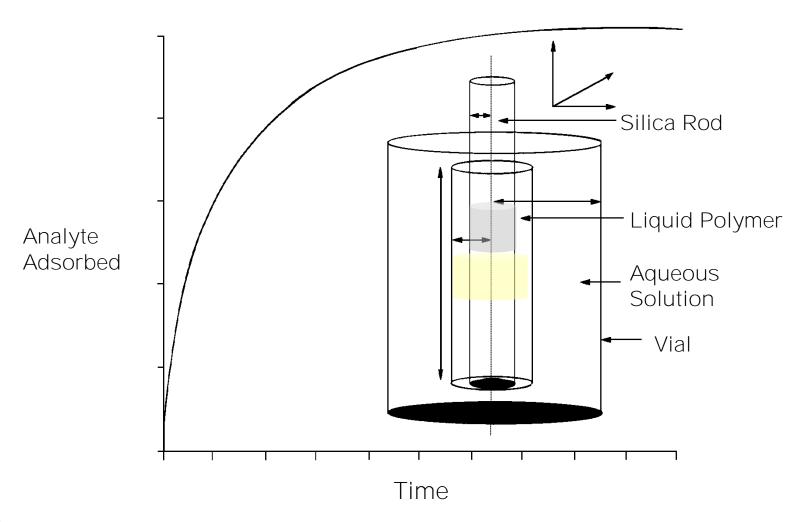
The SPME Concept


Sampling Technique: Headspace vs. Direct Immersion

Analytical considerations:

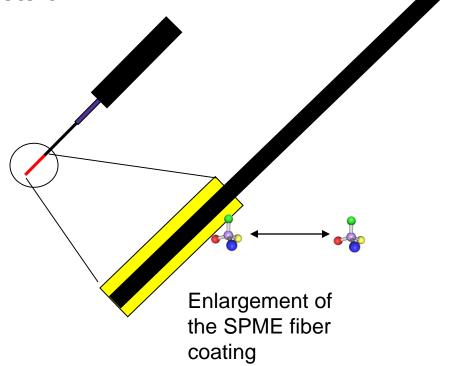
- Volatility of sample
- Sufficient vapor pressure
- Extraction time concerns
- Sample matrix
- Selectivity of analytes

Headspace extraction


Liquid or solid sample

Adsorption Mechanism for SPME

SPME is quantitative!!!



SPME Fiber Coating: The Business End

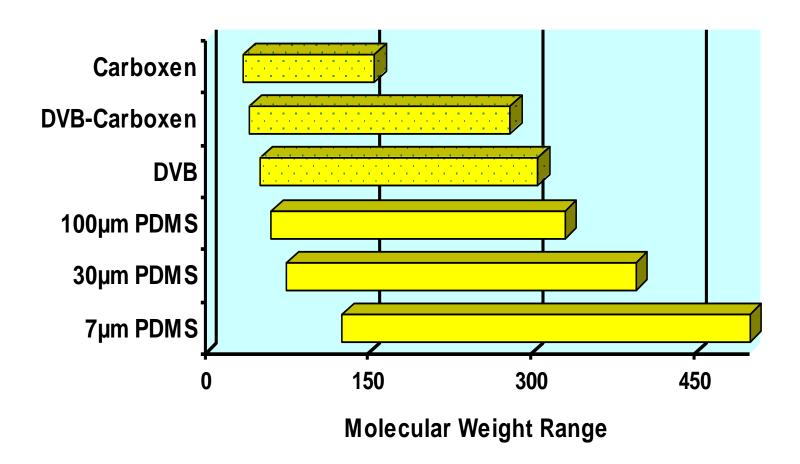
An equilibrium is set up between analytes dissolved in the sample (solution or gas phase) and in the liquid coating on the fiber.

The fiber coating consists of:

- GC-type phases
- Particles

Types of SPME Fiber Coatings

Films – Absorption:


Coating	Туре	Polarity
7 µm Polydimethylsiloxane (PDMS)	Absorbent	Nonpolar
30 μm PDMS	Absorbent	Nonpolar
100 μm PDMS	Absorbent	Nonpolar
85 µm Polyacrylate (PA)	Absorbent	Polar
60 µm PEG (Carbowax)	Absorbent	Polar

Particles – Adsorption:

Coating	Туре	Polarity	
85 µm Carboxen-PDMS	Adsorbent	Bipolar	
65 µm PDMS-DVB	Adsorbent	Bipolar	
55 µm/30 µm DVB/Carboxen-PDMS	Adsorbent	Bipolar	

Molecular Weight Range for SPME Fibers

Effects of Salt and pH

- Salt usually increases analyte uptake
 - Use 25-30% NaCl to salt-out samples
 - Not necessary for large non-polar analytes, such as
 PAHs and large hydrocarbons, and may reduce recovery
- Lower pH to extract acidic compounds
- Raise pH to extract basic compounds
- Beware of stability of analytes at different pH levels

Copyright © 2017 EMD Millipore Corporation. All Rights Reserved. MilliporeSigma, Millipore and the vibrant M are trademarks of Merck KGaA, Darmstadt, Germany. Supel, Supelclean, ENVI-Carb, and Stableflex are trademarks and Discovery, SLB, and SupelMIP are registered trademarks of Sigma-Aldrich Co. LLC. FocusLiner is a trademark of SGE Analytical Science Pty Ltd. Florisil is a registered trademark of U.S. Silica Company. Agilent is a registered trademark of Agilent Technologies, Inc.

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada.

