supelco air Monitoring

Irina Galushko, irina.galushko@merckgroup.com

Areas of Air Monitoring

- Occupational
- Workplace

Product Emissions

- Furniture (Car Seat)
- Flavor & Fragrances

Ambient

- Industry
- Farming
- Hazardous
- Waste Sites

Source

- Industrial Stacks
- Motor Vehicles
- Vapor Intrusion

National Security

- Chemical Agents
- Explosives
- Airport Screening (TSA)

Healthcare

- Anesthetic Gases
- Cancer Screening

Air Monitoring Workflow

What are we sampling (people or places)?

Personal Sampling

What concentration are people exposed to?

• Sampled taken in the breathing zone.

Area Sampling

What is the concentration in the air?

- Indoor air
- Fence line monitoring
- Evaluating engineering controls
- Smoke Stacks

Commonly Sampled Air Contaminants

Ambient Air

- Particulates (PM10, PM2.5)
- BTEX/VOCs
- Pesticides, PAHs, PCBs
- Ozone
- Carbonyls
- Carbon Monoxide
- Nitrogen Dioxide
- Sulfur Dioxide
- Lead

Indoor Air / Industrial Hygiene

- BTEX/VOCs
- Carbonyls
- Hydrogen sulfide
- Isocyanates TDI, MDI, HDI
- Acid vapors
- Metals Lead, Cadmium, Hexavalent Chromium

There are over 400 sampled contaminants

Sampling: How Are the Air Samples Taken?

There are two categories of air sampling. Both are important.

 Passive Sampling Air naturally diffuses into the sampler + Simplicity, flexibility, economy - Diffusion (slow process) 	NO PUMP
 Active Sampling Air is mechanically drawn into the sampler + User controls time, volume, rate - Pump 	PUMP

The different methods have their specific utility. We offer products for all types of sampling methods.

Passive Sampling

No Pump required

- Suitable for explosive atmospheres
- Low investment e.g. for areal mapping
- Light weight for personal sampling

Sampling is by diffusion (naturally occurring movement of air)

For quantification sampling rates are needed for each compound

• Sampling rates are typically provided by the manufacture of the device

Typically used for longer term sampling (> 4hours)

Meder

Radial Sampler - *radiello*[®]

3 core pieces are needed for sampling:

- 1. Adsorbent Cartridge Type depends on analytes
- 2. Diffusive Body Type depends on analytes
- 3. Support Plate
 - Triangular back plate
 - w/ pouch for barcode label

Diffusive Body & Cartridge combination is given by the method and can not be interchanged!

Merck

Radiello sampling process

Before sampling

- Place cartridge into diffusive body
- Attach diffusive body to support plate
- Note start time and date on the barcode label (and separate sheet)

Sampling

After sampling

- Note stop time and date on barcode label put cartridge back into storage vial & barcode label on vial
- Send storage vial with cartridge to lab for analysis

Analysis

 Analytical protocols can be found in the radiello Manual

Radiello Samplers

Samplers are available for:

- Aldehydes
- VOCs/BTEX (chemically desorbed with CS₂)
- VOCs/BTEX (thermally desorbed)
- NO₂/SO₂/HF
- Ozone (O₃)
- Hydrogen Sulfide (H₂S)
- Ammonia (NH₄)
- Hydrochloric acid (HCl)
- Anesthetic gases and vapors
- Phenols (thermally desorbed)
- 1,3-Butadiene (thermally desorbed)

Starter Kits with 1 complete sampler available for blue marked compounds

Active Sampling

Is performed by pulling air (vacuum) through/into the sampling media using an air sampling pump.

The chemicals in the air are trapped/concentrated on the adsorbent media.

Impinger & Bubbler

- Impinger Bubbler -> Fritted
 - -> Glass tip

Filled with adsorber solution

Filters & Cassettes

Mostly used for particles (dust) and aerosols

Different filter materials are available

- PVC, Cellulose ester, PTFE, Glass Fiber, coated Filter
- PALL & Whatman filter

Whole Air Sampling

Glass Gas Sampling Bulbs

- Available with Glass or PTFE valves
- Sample is removed using a syringe
- Can also be used to prepare calibration standards

Gas Sampling Bags

Plastic Bags (Tedlar®, PVF)

- Volumes 1-25L
- Sample can be concentrated in the lab using instrumentation or a tube can be used.

Bag Sampler

Sample is not exposed to the pump parts

- Prevents contaminating the pump & sample
- Compounds do not get stuck in the pump

Model 1062 10L-Bag 1-5 L/min

Supel[™]-Inert Air Sampling Bags (economic alternative to Tedlar)

•Supel[™]Inert Bags

•Incorporates our LB-2 Thermogreen[™] septa in the valves

- Low bleed
- •High puncture rates
- •Now two valve options are available

•Supel Inert FILM

•New fluoropolymer film as alternative for Tedlar

•Supel Inert FOIL

•<u>New</u>aluminium lined bags

sigma-aldrich.com/gassamplingbags

Adsorbent Tubes Solvent vs. Thermal Desorption

Solvent Desorption

- Flexibility in analytical method
- Permits analyte derivatization
- Sample conservation
- No special desorption instruments

Thermal Desorption

- Sensitivity typically 1000-fold higher
- No solvents needed
- Limited to GC analysis & thermal stable compounds
- Work up can be automated (routine measurements)

Solvent vs. Thermal Desorption:

Both important, both with advantages. Analysts choose based on their method requirements.

SOLVENT

HEAT

Adsorbent Tubes (Active Sampling)

Solvent Desorption Tubes

- ORBO Tubes (Supelco's Trade name)
- Over 75 configurations available
 - Charcoal
 - Carbons
 - Silica Gel
 - Porous Polymers
 - Coated Adsorbents

Thermal Desorption Tubes

- TD Tubes (Carbotrap-XXX Trade name)
- Single Bed Tubes
- Multi-Bed Tubes

S DNPH+ Air Flor

Solvent Desorption Tubes: ORBO

Design and recipe often according to OSHA & NIOSH methods Typically packed with two beds of the same adsorbent

• Ratio 2:1. The smaller bed is used to test for breakthrough.

Flamed sealed to keep the adsorbent clean

Adsorbents used

- Charcoal
- Carbons
- Silica Gel
- Porous Polymers
- Coated adsorbents

DNPH-Products Information & Bundling

DNPH-Brochure (OMZ) "Sample Collection and Analysis of Carbonyls"

- Products
- HPLC Methods for analysis
- Standards

Bundling

- HPLC Columns & Accessories
- HPLC Solvents
- Standards

Iso Cyanates Sampling by ASSET EZ4-NCO Dry

Determination acc. ISO17734-1

Commonly derivatisation with piperazine reagents

Can require in-field stabilization and cooled storage

Dibutylamine (DBA) derivatives are more stable and can be stored at room temp.

- No need for in field derivatisation/stabelization
- Reliable derivatisation of particular isocyanates
- Analysis by LC-MS

lsocyanate

Dibutylamine

Isocyanate dibutylamine derivative (urea derivative)

ASSET EZ4-NCO Dry Sampler for Iso Cyanates

Flow Rate Range 100-250 mL/min (200 mL/min suggested)

Low back-pressure (suitable for most air sampling pumps)

- ~9 inches of water @ 200 mL/min
- Sampling Time Range 5 min. up to 8 h (15 minutes is typical)
- After sampling put the caps back on the sampler & send to lab
- ASSET can be stored at room temp. at any time

Analysis by LC-MS

- Calibration Standards are available
 - Calibration solution
 - Deuterated Internal Standard Solution

When are Solvent Desorption Tubes used?

Thermo labile compounds

Need for immediate derivatisation

 \rightarrow better stability or yield (e.g.Formaldehyde, Isocyanates)

High Flow Sampling \rightarrow PUF

Only occasionally measurements

No Thermo desorption equipment available

Low initial costs

Universal applicable

Limitation

- Manual processing of samples
- Need of clean solvents

Thermal Desorption - What is it?

Thermal Desorption Tubes

- Requires a thermal desorption instrument
- Tubes are made of Glass or Stainless Steel
 - Glass is more inert, can visually see the integrity of the packing
 - Stainless Steel more durable, will not break
- Reusable ~100 times
- Single and Multi-beds tubes available
- TD Tubes (named Carbotrap-XXX)

Typical Adsorbents for Thermal Desorption

- Tenax[®] TA (2,6-diphenyl-p-phenylene oxide)
- Graphitized Carbon Blacks (GCB)
 - Non porous
 - Names: Carbopack[™], Carbotrap[™]
 - Various types available
- Carbon Molecular Sieves (CMS)
 - Porous
 - Names: Carboxen[™], Carbosieve[™]
 - Various types available
- Glass beads
 - Used to retain large molecular weight volatiles

Thermal Desorption Tube Offering by Manufacturer

Tube Dimension 3.5"x1/4" (89 x 6.3mm) PerkinElmer (ATD-400, TurboMatrix) Shimadzu (TD-20) DANI (Master TD) Markes (Unity)

PerkinElmer

Advantages/Limitations of Thermal Desorption

Advantages

- Wide range of compounds can be analyzed at one time
- Detection limits decreased 1000 times compared to solvent desorption
- No desorbing solvent required
- Suitable for routine measurements (Industrial Hygiene, IH)
 - Tubes are reusable
 - High sample throughput due to automation

Limitations

- Initial investment of a thermal desorber (tubes are not always interchangeable)
- Commonly only one analysis per sample (modern TD units allow for sample split)
- Not suitable for analytes requiring derivatisation or that are thermal labile

Information Resources for Methods

Official methods

- DIN, VDI
- European norms (EN, ISO,...)
- NIOSH / OSHA / EPA
 - <u>http://www.osha.gov/dts/sltc/methods/toc.html</u>
 - <u>http://www.cdc.gov/niosh/nmam/</u>

Literature (e.g. journal articles)

Literature of supplier (applications, recommendations)

Analytical common sense / knowledge

Sigma-Aldrich Web site on Air Monitoring

www.sigma-aldrich.com/airsampling

Application specific

- Vapour Intrusion Monitoring
- Chinese Drywall Contamination
- Petrochemical
- Agricultural Contaminats
- Anesthetic Gases in Healthcare
- Paints & Coatings

Vapor Intrusion

Petrochemical Industry

Chinese Drywall Contamination

Anesthetic Gases in Healthcare

Paints & Coatings

Literature

- "A Tool for Selecting an Adsorbent(s) for Thermal Desorption" (EQF, T402025)
- Supelco Air Methods Guide
 - Available on website

Supelco Air Methods Guide - Example

Com	Compound		Method	Volume Liters	Rate Liters/Min	Medium and/or Sample Collection Device	Supelco Model No.	Supelco Cat. No.	SKC Equiv	Analytical Technique	
Acena	Acenaphthene Acenaphthene		NIOSH 5506	200-1000	2	XAD-2	ORBO-43	20258	226-30-04	HPLC-UV/FI	
								 OPBO_42	23390-0	225-17-07	
Acena			NIOSH 5515	200-1000	2	PTFE filter		20238 23390-U	225-17-07	GC-FID	
Aconor	Acenaphthylene			200 4000	2	XAD-2	ORBO-43	20258	226-30-04	HPLC-UV/FI	
Acena			NIC3H 3300	200-1000		PTFE filter		23390-U	225-17-07		
Acona	Acenaphthylene			200-1000) 2	XAD-2	ORBO-43	20258	226-30-04	GC-FID	
Acena			100110010	200-1000		PTFE filter		23390-U	225-17-07		
Aceta	Acetaldehyde		NIOSH 2538	1-12	0.01-0.05	XAD-2 c/w 2-HMP	ORBO-25	20357	226-27	GC-FID	
Aceta	Acetaldehyde		NIOSH 2539	5	0.01-0.05	XAD-2 c/w 2 HMP	ORBO-23	20257-U	226-118	GC-FID	
Aceta	Acetaldehyde		NIOSH 3507	6-60	0.1-0.5	fritted bubbler		64835-U	225-36-2	HPLC-UV	
Aceta	Acetaldehyde		OSHA 68	3	0.05	XAD-2 c/w 2-HMP	ORBO-25	20357	226-27	GC-NPD	
Acet	Acetic Acid		NIOSH 1603	20-300	0.01-0.1	coconut charcoal	ORBO-32S	20267-U	226-01	GC-FID	
Acet	Acetic Acid		US Army	10-25		Chromosorb P c/w Na2CO3	ORBO-70	20256-U	NA	GC-FID	
Acetic	Acetic Anhydride		NIOSH 3506	25-100	0.2-1	fritted bubbler		64835-U	225-36-2	VIS	
Acetic	Acetic Anhydride		OSHA 102	7.5	0.05-0.5	glass fiber filter c/w DMBA & DOP	894	custom	225-9010	GC-NPD	
A aasia Anhudrida			OSHA 82	0.75	0.05	glass fiber filter c/w 1-2PP	821	custom	225-9009	GC-NPD	
			NIOSH 1300	0.50-3	0.01-0.2	coconut charcoal	ORBO-32S	20267-U	226-01	GC-FID	
			NIOSH 2549	1-6	0.01-0.05	3-bed thermal desorption tube	Carbotrap 349	20243	NA	TD-GC/MS	
7	-		OSHA 69	3	0.05	Carbosieve S-III (Anasorb CMS)	ORBO-91	20360	226-121	GC-FID	
		in	NIOSH 2506	0.30-12	0.2	Porapak QS	ORBO-1101	20061	226-59-09	GC-NPD	
SUPELCO			NIOSH 1606	1-25	0.01-0.2	coconut charcoal	ORBO-32L	20228	226-09	GC-FID	
		e	NIOSH 1003	0.2-5	0.01-0.2	coconut charcoal	ORBO-32S	20267-U	226-01	GC-FID	
Air Metho	ds	ide	NIOSH 2003	50-100	0.2-1	silica gel	ORBO-52S	20229	226-10	GC-FID	
Guide		ide	NIOSH 1019	3-30	0.01-0.2	petroleum charcoal	ORBO-303	20040-U	226-38	GC-FID	

2nd edition

SUPELCO

Merck

Summary Air Monitoring

Air Monitoring is done in various fields

- 2 techniques used
- Passive sampling
 - Radiello, TD, SPME
- Active Sampling
 - Adsorbent tubes
 - ORBO solvent desorption, LpDNPH
 - Thermal desorption
 - Impinger, Filters
 - Gas bulbs & bags
 - Supel-Inert Film & Foil bags
 - Sampling Accessories
 - ATIS
 - Sampling Pumps & Bag Samplers
- Analytical supplies

Columns, Solvents, Accessories Standards

Air Monitoring Brochure (KQV)

sigma-aldrich.com/air-monitoring sigma-aldrich.com/radiello sigma-aldrich.com/gassamplingbags

Thank You!

sigma-aldrich.com/air-monitoring

Hurricane Katrina